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DYNAMIC DEFORMATION OF A CURVED

PLATE WITH A RIGID INSERT

UDC 539.4+539.37Yu. V. Nemirovsky and T. P. Romanova

A general solution is obtained for dynamic bending of ideal rigid-plastic plates with a clamped or
simply supported curved contour containing an absolutely rigid insert of an arbitrary shape. The
plate is affected by a short-time high-intensity explosive dynamic load uniformly distributed over the
surface. It is shown that there are several mechanisms of plate deformation. Equations for dynamic
deformation are derived for each mechanism, and conditions of occurrence are analyzed. Examples
of numerical solutions are given.

Key words: rigid-plastic plate, arbitrary contour, rigid insert, dynamic load, ultimate load, final
flexure.

Introduction. The issues of calculating structures under the action of intense short-time loads are very
important in modern mechanics of deformable solids. To solve such problems, the model of a rigid-plastic body
is widely used [1]. The model is based on the assumption that the body starts deforming when the stress reaches
the ultimate value and plastic deformation becomes possible. Elastic deformations are neglected. For thin-sheet
structural elements, this simplification allowed solving numerous issues of practical importance. The model of
a rigid-plastic body was used in [2–9] to study the behavior of homogeneous plates with a complicated external
contour under the action of arbitrary dynamic loads of high intensity.

Structurally inhomogeneous plates are constitutive elements of many structures used in various areas of
engineering. Flat shields are often equipped by reinforced closed technological hatches. Therefore, damage of plates
with rigid inserts has to be examined. Up to now, this problem has been considered only for a circular plate with a
rigid circle at the center under conditions of axisymmetric loading and attachment [10]. The method proposed in
the present work allows, on the basis of the theory of an ideal rigid-plastic body, calculating plates with an arbitrary
curved contour, which are attached in an arbitrary manner, have an absolutely rigid insert of an arbitrary shape,
and are subjected to intense short-time dynamic loads. The method can be used for a wide class of approximate
engineering calculations.

1. We consider a plate made of an ideal rigid-plastic material with an arbitrary smooth convex contour l,
which is clamped or simply supported (Fig. 1). In the central part, the plate has an absolutely rigid insert Za with
an arbitrary contour l2. The plate is subjected to a high-intensity dynamic load P (t) uniformly distributed over
the surface. We consider explosive loads characterized by instantaneous reaching the maximum value Pmax = P (t0)
at the initial time t0 with their subsequent rapid decrease. As the insert Za remains rigid during its deformation,
we assume that the ultimate flexural moment in the insert is greater than M0 (the ultimate flexural moment in
the remaining part of the plate) and ρa/ρ � 1, where ρ and ρa are the surface densities of the plate and insert
materials, respectively.

The dynamics of the plate made of a rigid-plastic material can follow one of the three schemes of deformation,
depending on the value of Pmax. Under loads lower than the ultimate values (low loads), the plate remains at rest.
Under loads only slightly higher than the ultimate values (medium loads), the plate is deformed into a certain line
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surface, whereas the absolutely rigid insert and the points of its contour move translationally with an identical
velocity ẇc(t). As in the case of a plate without the insert [4, 6–9], a plastic pivot line l1 can be formed in the
plate; this line may consist of several segments (see Fig. 1). The position of the line l1 is determined by the shape
of the support contour of the plate from the condition of identical distances from the contour l to the line l1 in the
direction normal to the external contour [7, 9]. This scheme of deformation is called scheme No. 1. As in the case of
flexure of beams [1], circular and annular plates [12–14], rectangular and polygonal plates [1–3, 11], and plates with
a sophisticated contour [4–9], the plate dynamics in the case of rather high values of Pmax can be accompanied by
the emergence of a zone of intense plastic deformation Zp moving translationally. There are also possible situations
where some part of the pivot l1 is retained or the zone Zp does not cover the entire insert Za (high loads; scheme
in Fig. 2 is called scheme No. 2) or where the pivot l1 is absent and the insert Za is inside the zone Zp (superhigh
loads; scheme in Fig. 3 is called scheme No. 3).

Let the equation for the plate contour l be set in a parametric form: x = x1(ϕ) and y = y1(ϕ) (0 � ϕ � 2π).
In all schemes of deformation, the normal to the curve l directed inward the region occupied by the plate hits the
pivot l1, the contour l2, or the curve l3, which is the contour of the zone Zp (see Figs. 1–3). We use the notation Zij

to denote the zone of the plate, the normal from each point of this zone to the contour l being incident onto the
curve li (i = 1, 2, 3; j = 1, . . . ). The number of the curves li depends on the shapes of the plate and the insert. We
denote part of the external contour lij , which is the support contour of the zone Zij , by lij . Part of the contour lij
is determined in the interval ψij � ϕ � ξij (i = 1, 2, 3; j = 1, . . .). We use the notation Dnj to denote the distance
normal to the contour l, calculated from the contour lnj to the curve ln in the zone Znj (n = 1, 2). The values
of Dnj depend on the shapes of the plate and insert contours, hence, on the parameter ϕ only. It can be shown
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[4, 6] that the normal to the contour l is also the normal to the curve l3 and that the distance D between l3j

and l3 is independent of the parameter ϕ and the subscript j. The equation l3 [x = x3(ϕ) and y = y3(ϕ), where
ψ3j � ϕ � ξ3j ] for the contour of the zone Zp has the form [4, 6]

x3 = x1 −Dy′1/L, y3 = y1 +Dx′1/L. (1)

Here L(ϕ) =
√
x′21 (ϕ) + y′21 (ϕ), where ( · )′ = ∂( · )/∂ϕ.

We derive the equations of plate motion from the principle of virtual powers with the use of the d’Alembert
principle [11]:

K = A−N ; (2)

K =
∫ ∫

S\Za

ρ
∂2u

∂t2
∂u∗

∂t
ds+

∫ ∫

Za

ρa
∂2u

∂t2
∂u∗

∂t
ds,

A =
∫ ∫

S

P (t)
∂u∗

∂t
ds, N =

∑

m

∫

lm

Mm

[∂θ∗m
∂t

]
dl.

(3)

Here K, A, and N are the powers of inertial, external, and internal forces of the plate, respectively, S is the plate
area, u is the flexure, t is the current time, lm are the lines of discontinuity of angular velocities, Mm is the flexural
moment on lm, and [∂θ∗m/∂t] is the discontinuity of angular velocity on lm. In the expression for N , summation is
performed over all lines of discontinuity of angular velocity, including the plate boundary. Admissible velocities are
indicated by the asterisk.

As the zones Za and Zp move translationally, the flexural velocity in the zone Zp is ẇc(t) because of continuity
of velocities at the boundaries of these zones. We denote the velocities of the angle of deflection of the zone Zij on
the support contour lij by α̇ij (i = 1, 2, 3; j = 1, . . .). The condition of continuity of velocities at the boundaries
of the zones Z3j and Zp yields ẇc = α̇3jD; hence, α̇3j is independent of the parameter ϕ and the subscript j. We
denote α̇3j by α̇. Then, the flexural velocities in different zones of the plate can be presented as

(x, y) ∈ Za: u̇(x, y, t) = ẇc(t), (x, y) ∈ Zp: u̇(x, y, t) = ẇc(t),

(x, y) ∈ Z3j: u̇(x, y, t) = α̇(t)d3j(x, y) (j = 1, . . .), (4)

(x, y) ∈ Znm: u̇(x, y, t) = α̇nm(t, ϕ)dnm(x, y) (n = 1, 2; m = 1, . . .),

where dij(x, y) is the distance from the point (x, y) to the support contour of the zone Zij (i = 1, 2, 3; j = 1, . . .),
and the dot over the symbols indicates their derivatives with respect to time.

As in [9], we assume that α̇1j is independent of the parameter ϕ but may depend on the subscript j. From
the condition of continuity of velocities at the boundaries of the contacting zones [Z1i and Z2j ; Z3m and Zkn

(i, j,m, n,= 1, . . .; k = 1, 2)], we obtain the relations

α̇1i(t)D1i(ϕ∗) = [α̇2j(t, ϕ∗)D2j(ϕ∗)]µij (α̇D)λ1i ; (5)

α̇2n(t, ϕ∗∗)D2n(ϕ∗∗) = [α̇1m(t)D1m(ϕ∗∗)]µmn(α̇D)λ2n , (6)

where ϕ∗ and ϕ∗∗ are the parameters of the zone boundaries considered; µij = 1 if the zones Z1i and Z2j are in
contact and µij = 0 if the zones Z1i and Z2j do not contact each other; λkj = 1 if the zones Z3i and Zkj are in
contact and λkj = 0 if the zones Z3i and Zkj do not contact each other. It follows from equalities (5) and (6) that

α̇ij(t, ϕ) = Fij(t, ϕ)α̇(t) (i = 1, 2; j = 1, . . .). (7)

The power of the internal forces in Eq. (3) is calculated by the formula (see [15])

N = M0(2 − η)
∮

l

∂u̇∗

∂n
dl,

where η = 0 if the external contour is clamped and η = 1 if the external contour is simply supported; ∂u̇/∂n is the
derivative of the flexural velocity along the normal to the contour l or the velocity of the angle of deflection of the
plate surface from the horizontal line on the contour l; dl is an element of the contour l.
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With allowance for the notation used and for the equality F3j = 1, Eqs. (3) become

K = α̇∗α̈ρ
∑

i,j

∫ ∫

Zij

F 2
ijd

2
ij ds+ ẇ∗

c ẅc

[
ρ

∫ ∫

Zp

ds+ ρa

∫ ∫

Za

ds
]
,

A = P (t)
[
α̇∗ ∑

i,j

∫ ∫

Zij

Fijdij ds+ ẇ∗
c

∫ ∫

Za∪Zp

ds
]
, N = M0(2 − η)α̇∗ ∑

i,j

∫

lij

Fij dl.

Substituting these equalities into (2) and taking into account that ẇ∗
c (t) and α̇∗(t) are independent of each

other, we obtain the equations of motion for the deformation scheme No. 2:

ρα̈
∑

i,j

∫ ∫

Zij

F 2
ijd

2
ij ds = P (t)

∑

i,j

∫ ∫

Zij

Fijdij ds−M0(2 − η)
∑

i,j

∫

lij

Fij dl; (8)

ẅc

[
ρ

∫ ∫

Zp

ds+ ρa

∫ ∫

Za

ds
]

= P (t)
∫ ∫

Za∪Zp

ds. (9)

The condition of continuity of velocities at the boundaries of the zones Sp and Z3j yields the equality

α̇D = ẇc. (10)

At the boundaries of the contacting zones Zij and Zmn (i,m = 1, 2), the following condition is satisfied:

Dij(βijmn) = Dmn(βijmn). (11)

Here the parameter βijmn determines the boundary of the zones Zij and Zmn (βijmn = ψij or βijmn = ξij).
The boundaries of the zones Zij (i = 1, 2) and Z3n obey the equality

D = Dij(ϕij), (12)

where ϕij = ψij or ϕij = ξij .
At the initial time, the plate is at rest, i.e.,

α(t0) = α̇(t0) = wc(t0) = ẇc(t0) = 0. (13)

The initial values of D(t0) and βijmn(t0) are determined depending on the value of Pmax, which will be
demonstrated below for particular problems.

System (7)–(12) describes the plate motion for the case of deformation by scheme No. 2. In the case of
deformation by scheme No. 3, there are no zones Z1i and Z2j , the zones Z3n merge into one zone, and the motion
is described by Eqs. (8)–(10) with i = 3.

In the case of deformation by scheme No. 1, there are no zones Z3n; the equalities

α̇ij(t, ϕ) = Gijẇc(t), G1j =
1

D1j(ϕ∗)
, G2j(ϕ) =

1
D2j(ϕ)

(i = 1, 2; j = 1, . . .) (14)

are valid instead of Eqs. (7) and (1) and expressions (3) acquire the form

K = ẇ∗
c ẅc

(
ρ

∑

i=1,2

∑

j

∫ ∫

Zij

G2
ijd

2
ij ds+ ρa

∫ ∫

Za

ds
)
,

A = ẇ∗
cP (t)

( ∑

i=1,2

∑

j

∫ ∫

Zij

Gijdij ds+
∫ ∫

Za

ds
)
, N = ẇ∗

cM0(2 − η)
∑

i=1,2

∑

j

∫

lij

Gij dl.

Substituting these equalities into Eq. (2), we obtain

ẅc

(
ρ

∑

i=1,2

∑

j

∫ ∫

Zij

G2
ijd

2
ij ds+ ρa

∫ ∫

Za

ds
)

= P (t)
( ∑

i=1,2

∑

j

∫ ∫

Zij

Gijdij ds+
∫ ∫

Za

ds
)
−M0(2 − η)

∑

i=1,2

∑

j

∫

lij

Gij dl. (15)
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System (14), (15) describes the plate motion for the case of deformation by scheme No. 1. Deflections in different
zones of the plate are determined by Eqs. (4).

To calculate double integrals over the zones Zij (i = 1, 2, 3; j = 1, . . .) in the equations of motion, it is
convenient to pass to a curvilinear coordinate system (ν1, ν2) related to the Cartesian coordinate system as

x = x1(ν2) − ν1y
′
1(ν2)/L(ν2), y = y1(ν2) + ν1x

′
1(ν2)/L(ν2). (16)

The coordinate lines ν1 = const are located at a distance ν1 from the contour l. The straight lines ν2 = const are
normals to the external contour of the plate.

We determine the ultimate load P0 from Eq. (15) at the time of motion beginning t0 and from the condition
ẅc(t0) = 0. Then, we have

P0 =

M0(2 − η)
∑

i=1,2

∑

j

∫

lij

Gij dl

∑

i=1,2

∑

j

∫ ∫

Zij

Gijdij ds+
∫ ∫

Za

ds

. (17)

2. We consider the dynamic motion of curved plates with an arbitrary rigid insert by an example of a
circular plate with a regular n-angle rigid insert located at the center. Let R and R1 be the radii of the circular
plate and the circumference inscribed into the polygonal contour of the rigid insert, respectively; R1 < R cos (π/n)
(Fig. 4). Under medium loads, the plate is deformed into a line surface with formation (owing to its symmetry) of
n identical zones Z2, i.e., we have scheme No. 1 (see Fig. 4); the velocity of the angle of rotation on the support
contour is α̇2(t, ϕ). Under high loads, n identical zones Zp are formed in the central part of the plate, in the vicinity
of the rigid insert, i.e., we have scheme No. 2 (Fig. 5). Equation (1) for l3 of the contour Zp in the polar coordinate
system has the form

x3 = (R −D) cosϕ, y3 = (R−D) sinϕ (−ξ � ϕ � ξ, 0 < ξ < π/n).

There are still n identical zones Z2: ξ � ϕ � (2π/n) − ξ. Under superhigh loads, there are no zones Z2, whereas
the insert Za is located inside the zone Zp and D � R−R1/ cos (π/n), i.e., we have scheme No. 3 (Fig. 6).

In this case, the equations of plate motion (7)–(9), (11), and (12) for the scheme of deformation No. 2 are

ρα̈Σ1 = P (t)Σ2 −M0(2 − η)Σ3; (18)

ẅc(ρΣ4 + ρaΣ5) = P (t)Σ6; (19)

D = R−R1/ cos ξ; (20)

α̇2(t, ϕ) = F2(t, ϕ)α̇(t); F2(t, ϕ) = [R−R1/ cos ξ(t)]/(R−R1/ cosϕ). (21)
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Here

Σ1(ξ) =
n(R cos ξ −R1)2

6 cos2 ξ

{
ξ

(R cos ξ −R1)(R cos ξ + 3R1)
cos2 ξ

+R2
(π
n
− ξ

)

− 3R2
1

(
tan

π

n
− tan ξ

)
+ 2RR1

[
ln

cos (π/n)
1 − sin (π/n)

− ln
cos ξ

1 − sin ξ

]}
;

Σ2(ξ) =
n(R cos ξ −R1)

3 cos ξ

{
ξ

(R cos ξ − R1)(R cos ξ + 2R1)
cos2 ξ

+R2
(π
n
− ξ

)

+RR1

[
ln

cos (π/n)
1 − sin (π/n)

− ln
cos ξ

1 − sin ξ

]
− 2R2

1

(
tan

π

n
− tan ξ

)}
;

Σ3(ξ) = 2nR
[
ξ +

R cos ξ −R1

R cos ξ

(π
n
− ξ +

R1

A∗
Σ∗

)]
; Σ4(ξ) = nR2

1

( ξ

cos2 ξ
− tan ξ

)
;

Σ5 = nR2
1 tan

π

n
; Σ6(ξ) = Σ4(ξ) + Σ5 = nR2

1

( ξ

cos2 ξ
− tan ξ + tan

π

n

)
;

Σ∗ = ln
[B∗ tan (π/2n) +A∗][−B∗ tan (ξ/2) +A∗]
[−B∗ tan (π/2n) +A∗][B∗ tan (ξ/2) +A∗]

; B∗ = R+R1; A∗ =
√
R2 −R2

1.

Then, the plate motion by scheme No. 2 is described by Eqs. (10) and (18)–(21).
The equations of the plate motion (14) and (15) by scheme No. 1 have the form

α̇2(t, ϕ) = G2(ϕ)ẇc(t); G2(ϕ) = cosϕ/(R cosϕ−R1); (22)

ẅc(ρΣ7 + ρaΣ5) = P (t)Σ8 −M0(2 − η)Σ9, (23)

where

Σ7 = Σ1(0)/(R−R1)2; Σ8 = Σ2(0)/(R−R1) + Σ5; Σ9 = Σ3(0)/(R−R1).

The equations of the plate motion (8) and (9) by scheme No. 3 have the form

ρα̈Σ10 = P (t)Σ11 −M0(2 − η)Σ12; (24)

ẅc(ρΣ13 + ρaΣ5) = P (t)Σ14. (25)
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Here

Σ10(D) = D3(4R− 3D)/6; Σ11(D) = D2(3R− 2D)/3; Σ12 = Σ3(π/n)/π = 2R;

Σ13(D) = π(R −D)2 − nR2
1 tan (π/n); Σ14(D) = Σ13(D) + Σ5 = π(R −D)2.

Then, the plate motion by scheme No. 3 is described by Eqs. (10), (24), and (25).
The ultimate load P0 (17) is determined as

P0 =
M0(2 − η)Σ9

Σ8
=

M0(2 − η)Σ3(0)
Σ2(0) + (R−R1)Σ5

. (26)

For R1 = 0, the plate considered becomes circular and does not contain any insert. For this case, Eq. (26)
yields P0 = 6M0(2− η)/R2. If the plate is simply supported, this value equals the ultimate load P̄0 obtained in [16]
on the basis of the exact solution. In the case of a clamped contour, the ultimate load predicted by Eq. (26) is 2P̄0.
In [13], it was obtained as a result of an approximate solution on the basis of Tresca’s condition of plasticity and
equals 1.875P̄0. As n→ ∞, we obtain a circular rigid insert. For such a plate, the ultimate load is determined as

P0 = 6M0(2 − η)R/(R3 −R3
1) (27)

and coincides, in the case of a simply supported plate, with the ultimate load obtained on the basis of the exact
solution [10]. Figure 7 shows the load p0 = P0R

2/[(2 − η)M0] as a function of the ratio R1/R for different values
of n: n = 3 (curve 1), n = 4 (curve 2), n = 5 (curve 3), and n = ∞ (curve 4).

We optimize the shape of a regular n-angle rigid insert to find the extreme value of the ultimate load of the
plate considered under the condition of a constant area of the rigid insert Sa, thickness, method of attachment, and
radius of the circular plate. As the area of the rigid insert is Sa = nR2

1 tan (π/n), Eq. (26) acquires the form

P0 = 6M0(2 − η)A1/R
2,

A1 =

π

n
+

δ

1 − δ2
ln

(1 + δ) tan (π/2n) +
√

1 − δ2

−(1 + δ) tan (π/2n) +
√

1 − δ2

π/n+ δ2 tan (π/n) + δ ln {cos (π/n)/[1 − sin (π/n)]} , δ =
1
R

√
Sa

n tan (π/n)
.

As A1 decreases with increasing n and the inequality R1 =
√
Sa/[n tan (π/n)] < R cos (π/n) has to be satisfied,

a circular plate with a circular rigid insert has the minimum ultimate load P0 = 6M0(2 − η)R/[R3 − (
√
Sa/π )3],

260



and the plate with an n0-angle rigid insert has the maximum ultimate load [n0 is the minimum number among all
values of n that satisfy the inequality sin (2π/n)n/2 > Sa/R

2].
We analyze the plate motion considered with different levels of the explosive load.
1. For 0 < Pmax � P0 (low loads), the plate remains at rest.
2. For P0 < Pmax � P1 (medium loads), where P1 is the load corresponding to the emergence of the zone Zp,

the plate motion follows scheme No. 1. We determine the load P1 as follows. Differentiating Eq. (10) in time and
eliminating the quantities α̈ and ẅc from the resultant equality with the use of Eqs. (18) and (19), we obtain the
equality

−ρα̇Ḋ
D

Σ1 = P (t)
[
Σ2 − ρΣ1Σ6

D(ρΣ4 + ρaΣ5)

]
−M0(2 − η)Σ3. (28)

Taking into account that α̇(t0) = 0 and that the equalities P1 = P (t0), D(t0) = maxD = R − R1, and ξ(t0) = 0
are hold if the zone Zp appears, whereas the zones Zp and Z3 are absent, we obtain

P1 =
M0(2 − η)Σ3(0)

Σ2(0) − ρΣ1(0)Σ6(0)/{(R−R1)[ρΣ4(0) + ρaΣ5]} . (29)

It is seen from Eqs. (26) and (29) that P0 < P1. We write Eq. (23) for scheme No. 1 in the form

ẅc(t) = Q[P (t) − P0], (30)

where Q = Σ8/(ρΣ7 + ρaΣ5). The initial conditions have the form (13). At the time t = T , the load is removed,
and the plate moves by inertia for a certain time.

For t0 � t � T , integrating the equation of motion (30), we have

ẇc(t) = Q
[ t∫

t0

P (τ) dτ − P0(t− t0)
]
, wc(t) = Q

[ t∫

t0

m∫

t0

P (τ) dτ dm− P0
(t− t0)2

2

]
.

For T < t � tf , the plate motion occurs owing to inertia until the plate stops at the time tf ; it is described
by the equation

ẅc(t) = −QP0

with the initial conditions ẇc(T ) and wc(T ). The time tf is determined by the condition

ẇc(tf ) = 0. (31)

Integrating the equation of motion, we obtain the equalities

ẇc(t) = ẇc(T ) −QP0(t− T ); (32)

wc(t) = wc(T ) + ẇc(T )(t− T ) −QP0(t− T )2/2.

It follows from Eqs. (31) and (32) that

tf = t0 +
1
P0

T∫

t0

P (t) dt. (33)

The deflections are calculated by Eqs. (4) and (22), and the maximum final flexure is found by the formula

wc(tf ) = Q
[ 1
2P0

( T∫

t0

P (t) dt
)2

−
T∫

t0

(t− t0)P (t) dt
]
.

3. For high loads P1 < Pmax � P2 (P2 is the load at which the zone Z2 disappears,) the plate motion starts
with a developed zone Zp and R −R1/ cos (π/n) < D(t0) � R− R1. The initial values ξ0 = ξ(t0) and D0 = D(t0)
are determined from Eq. (28) with allowance for the equality α̇(t0) = 0 and relation (20):

Pmax

{
Σ2(ξ0) − ρΣ1(ξ0)Σ6(ξ0)

D0[ρΣ4(ξ0) + ρaΣ5]

}
= M0(2 − η)Σ3(ξ0). (34)
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The load P2 is determined from equality (34) with ξ0 = π/n and D0 = R−R1/ cos (π/n):

P2 =
M0(2 − η)Σ3(π/n)

Σ2(π/n) − ρΣ1(π/n)Σ6(π/n)/{[R−R1/ cos (π/n)][ρΣ4(π/n) + ρaΣ5]} .

In the first phase of deformation (t0 < t � t1), the plate motion occurs by scheme No. 2. The deformation
is described by Eqs. (10) and (18)–(21) with the initial conditions (13) and (34). In this phase, the zone Zp is
compressed (Ḋ > 0) by the law described by Eq. (28). The time t1 corresponding to disappearance of the zone Zp

is determined from the equality ξ(t1) = 0. At this time, the values of ẇc(t1) and wc(t1) are determined.
In the second phase of deformation (t1 < t � tf ), the plate motion occurs by scheme No. 1 until the stop at

the time tf . The deformation is described by Eqs. (22) and (23) with the initial conditions determined at the end
of the first phase of motion. The time of the stop is determined by condition (31). All deflections in the plate are
calculated by Eqs. (4) and (20)–(22) with allowance for all phases of motion.

4. For Pmax > P2 (superhigh loads), the plate motion starts by scheme No. 3 with a developed zone Zp,
which completely covers the rigid insert Za, and then we have 0 < D < R − R1/ cos (π/n). We find the value of
D0 = D(t0) as follows. Differentiating Eq. (10) with respect to time and eliminating α̈ and ẅc from the resultant
equality with the use of Eqs. (24) and (25), we obtain

−ρα̇Ḋ
D

Σ10 = P (t)
[
Σ11 − ρΣ14Σ10

D(ρΣ13 + ρaΣ5)

]
−M0(2 − η)Σ12. (35)

Taking into account that α̇(t0) = 0, we determine D0 from the equality

Pmax

{
Σ11(D0) − ρΣ14(D0)Σ10(D0)

D0[ρΣ13(D0) + ρaΣ5]

}
= M0(2 − η)Σ12. (36)

In the first phase of deformation (t0 < t � t1), the plate motion occurs by scheme No. 3. The deformation
is described by Eqs. (10), (24), and (25) with the initial conditions (13) and (36). In this phase, the zone Zp

is compressed by the law described by Eq. (35). The time t1 corresponding to the emergence of the zone Z2 is
determined from the equality D(t1) = R−R1/ cos (π/n). At this time, the values of α̇(t1) and α(t1) are found.

In the second (t1 < t � t2) and third (t2 < t � tf ) phases of deformation, the plate motion occurs in the
same manner as the first and second stages of deformation under high loads with appropriate initial values.

All deflections are calculated from Eqs. (4) with allowance for all phases of motion. The solid curves in
Fig. 8 refer to the deflections w = uR2ρ/(M0T

2) with ϕ = 0 of a simply supported circular plate with a square
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rigid insert (n = 4) and R1/R = 0.2 and ρa/ρ = 3.0 under the action of a superhigh load of a “rectangular” form:
P (t) = 33.82M0/R

2 (for 0 � t � T ) or P (t) = 0 (for t > T ). Curves 1–4 show the deflections of the plate at the
times t = T , t = t1 = 1.89T , t = t2 = 2.12T , and t = tf = 5.88T , respectively.

3. As another example, we consider the dynamic behavior of an elliptical plate with a rigid insert Za whose
contour is located at identical distances Da from the external contour (Fig. 9). The equation of the contour l is set
in a parametric form: x1 = a cosϕ, y1 = b sinϕ (0 � ϕ � 2π and b � a). We assume that 0 < Da � b2/a and the
pivot l1 is not formed (see [6]). Then, the equation of the contour of the rigid insert l2 has the form (1) for D = Da.
The curvilinear coordinate system (16) has the form

x = [a− ν1b/L(ν2)] cos ν2, y = [b− ν1a/L(ν2)] sin ν2,

L(ϕ) =
√
a2 sin2 ϕ+ b2 cos2 ϕ.

Two deformation schemes are possible for the plate considered. Under medium loads, the plate is deformed
in a cone-shaped manner (scheme No. 1; Fig. 9). The angle of rotation of the plate around the support contour of
the plate is identical for all ϕ and equal to α(t). Under high loads, the rigid insert Za is located inside the plastic
region Zp, and the contour l3 is located at identical distances Da −D from the points of the contour of the rigid
insert l2 (scheme 3; Fig. 10).

The equations of motion (8) and (9) under high loads have the form of Eqs. (18) and (19), where Σi should
be replaced by Ωi (i = 1, . . . , 6):

Ω1(D) =
∫ ∫

Z3

d2
3 ds =

2π∫

0

{ D∫

0

ν2
1

[
L(ν2) − ν1ab

L2(ν2)

]
dν1

}
dν2 =

D3

6

[
8

π/2∫

0

L(ϕ) dϕ− 3πD
]
,

Ω2(D) =
∫ ∫

Z3

d3 ds =

2π∫

0

{ D∫

0

ν1

[
L(ν2) − ν1ab

L2(ν2)

]
dν1

}
dν2 =

2D2

3

[
3

π/2∫

0

L(ϕ) dϕ− πD
]
,

Ω3 =
∫

l

dl = 4

π/2∫

0

L(ϕ) dϕ; Ω4(D) =
∫ ∫

Zp

ds = 4(Da −D)

π/2∫

0

L(ϕ) dϕ− π(D2
a −D2),

Ω5 =
∫ ∫

Za

ds = πab−Da

[
4

π/2∫

0

L(ϕ) dϕ− πDa

]
,
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Ω6(D) = Ω4(D) + Ω5 = πab−D
[
4

π/2∫

0

L(ϕ) dϕ− πD
]
.

Here d3(x, y) is the distance from the point (x, y) to the support contour; Z3 = S \ (Za ∪ Zp). Then, the plate
motion is described by Eqs. (10), (18), and (19) with allowance for the replacement made.

The equations of motion (14) and (15) under medium loads have the form

α̇Da = ẇc; ẅc

[
ρ

Ω1(Da)
D2

a

+ ρaΩ5

]
= P (t)

[Ω2(Da)
Da

+ Ω5

]
−M0(2 − η)

Ω3

Da
.

The ultimate load (17) with allowance for

π/2∫

0

L(ϕ) dϕ ≈ π

8
[3(a + b) − 2

√
ab ] (see [6]) is calculated by the

formula

P0 =
M0(2 − η)Ω3

Ω2(Da) +DaΩ5
≈ 6M0(2 − η)[3(a+ b) − 2

√
ab ]

Da{4(3ab+D2
a) − 3Da[3(a+ b) − 2

√
ab ]} ;

in the case of a circular plate with a circular rigid insert (a = b = R and Da = R−R1), it coincides with Eq. (27).
An analysis of the dynamic behavior of the plate considered is similar to the analysis performed above for

a circular plate with a regular polygonal rigid insert. The difference is that P1 = P2 and scheme No. 1 is realized
after scheme No. 3 for Pmax > P1. The load P1 is calculated by the formula [see Eq. (29)]

P1 =
M0(2 − η)Ω3

Ω2(Da) − ρΩ1(Da)Ω6(Da)
Da[ρΩ4(Da) + ρaΩ5]

≈ 6M0(2 − η)ρa[3(a+ b) − 2
√
ab ]

ρD2
a[3(a+ b) − 2

√
ab− 2Da(4ρa/ρ− 3)]

.

The load p0 = P0a
2/[(2 − η)M0] as a function of the ratio Da/a for different values of b/a is plotted in Fig. 7:

curve 4 refers to b = a, curve 5 refers to b/a = 0.8, and curve 6 refers to b/a = 0.6. The dashed and dotted curves
in Fig. 8 correspond to the deflections w = ua2ρ/(M0T

2) in the cross section y = 0 of a simply supported elliptic
plate with b/a = 0.8, with a rigid insert and Da/a = 0.5, ρa/ρ = 1.5 under the action of a high load with linear
attenuation: P (t) = 75.48(T − t)M0/R

2 for 0 � t � T and P (t) = 0 for t > T . Curves 5–7 show the deflections of
the plate at the times t = T , t = t1 = 1.16T , and t = tf = 4.6T , respectively.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00161-a).
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